101251
14
Физика вокруг нас, да-да. К сожалению, когда сидишь за школьной партой, то, зачастую, мало что понимаешь. Но, оглянувшись по сторонам, можно понять, что физические явления и процессы везде, без них мир бы рухнул. После прочтения данного поста даже те, кто совсем не понимал ничего в физике, смогут четко представлять несколько физических явлений.
Почему водомерка бегает по воде
Есть такие живые существа - водомерки, которые очень ловко передвигаются по воде, будто скользят по ней.
Если присмотреться, то можно увидеть, как ее тонкие лапки, надавливая на поверхность воды, оставляют небольшие выемки, но сама гладь не нарушается. То есть вода будто покрыта какой-то плёнкой, по которой водомерка скользит и не тонет. Вот как раз здесь мы и видим силу поверхностного натяжения воды. Когда поверхность прогибается под очень малым весом насекомого, то вода отвечает давлением, которое обращено изнутри наружу. Таким образом она стремится быстро восстановить свою гладь. Водомерка передвигается и не тонет.
Дома вы можете устроить такой же эксперимент: для этого достаточно налить воды в миску и положить на водную гладь обычные скрепки и, вуаля, сила поверхностного натяжения в действии.
Если присмотреться, то можно увидеть, как ее тонкие лапки, надавливая на поверхность воды, оставляют небольшие выемки, но сама гладь не нарушается. То есть вода будто покрыта какой-то плёнкой, по которой водомерка скользит и не тонет. Вот как раз здесь мы и видим силу поверхностного натяжения воды. Когда поверхность прогибается под очень малым весом насекомого, то вода отвечает давлением, которое обращено изнутри наружу. Таким образом она стремится быстро восстановить свою гладь. Водомерка передвигается и не тонет.
Дома вы можете устроить такой же эксперимент: для этого достаточно налить воды в миску и положить на водную гладь обычные скрепки и, вуаля, сила поверхностного натяжения в действии.
Кто использует реактивное движение
Такой физический процесс, как реактивное движение, мы можем наблюдать в живой природе среди обитателей морских глубин. Ярким примером является осьминог, для которого такой способ движения основной.
Как он двигается? Да просто засасывает в себя определенное количество воды и с силой выталкивает ее наружу, тем самым получая определенное движение. Это и есть реактивное движение. По данному принципу летают ракеты.
Кстати, возьмите воздушный шарик, надуйте и отпустите... Он выпишет ряд пируэтов с невообразимой скоростью. Это тоже яркая иллюстрация реактивного движения.
Как он двигается? Да просто засасывает в себя определенное количество воды и с силой выталкивает ее наружу, тем самым получая определенное движение. Это и есть реактивное движение. По данному принципу летают ракеты.
Кстати, возьмите воздушный шарик, надуйте и отпустите... Он выпишет ряд пируэтов с невообразимой скоростью. Это тоже яркая иллюстрация реактивного движения.
×
Василиск или ящерица Иисуса Христа
Долгое время наука не могла объяснить, почему такие ящерицы могут бегать по воде. За эту способность Василисков прозвали ящерицей Иисуса Христа.
Дело в том, что на лапках у нее есть перепонки, которые в спокойном состоянии спрятаны. В случае опасности, ящерица подбегает к водоему и начинает быстро работать лапками, перепонки раскрываются, а при ударе на воде появляются небольшие ямки, в которые, благодаря перепонкам, попадает воздух, образуя воздушную подушку. Василиск бежит и не тонет. Здесь так же присутствует сила поверхностного натяжения воды, которая стремится восстановить гладь, но еще и выталкивающая сила, стремящаяся поднять зашедший в водные ямки воздух на поверхность.
Дело в том, что на лапках у нее есть перепонки, которые в спокойном состоянии спрятаны. В случае опасности, ящерица подбегает к водоему и начинает быстро работать лапками, перепонки раскрываются, а при ударе на воде появляются небольшие ямки, в которые, благодаря перепонкам, попадает воздух, образуя воздушную подушку. Василиск бежит и не тонет. Здесь так же присутствует сила поверхностного натяжения воды, которая стремится восстановить гладь, но еще и выталкивающая сила, стремящаяся поднять зашедший в водные ямки воздух на поверхность.
Зачем птицы летят клином
Силы трения и сопротивления встречаются нам повсюду. А вот в мире птиц и рыб их можно продемонстрировать на наглядном примере. Многие перелетные птицы во время длительных путешествий выстраиваются в клин или косяк. Зачем они это делают? Чтобы уменьшить силу трения о воздух и силу сопротивления. Более сильная птица летит впереди. Ее тело рассекает воздух, как киль корабля. Остальные выстраиваются по обе стороны от нее, инстинктивно сохраняя острый угол, потому что в таком положении сила сопротивления минимальна, и птицы могут лететь легко и быстро.
Как муха удерживается на стекле
Помните, как ловко муха ползает по стеклу. Все дело в маленьких присосках на ее лапках. В них создается разрежение (как бы вакуум), а атмосферное давление удерживает их от падения.
Все вы так же хорошо помните, что есть рыбы-прилипалы, например, акульи реморы. У них верхний плавник образует присоску с эдакими карманами, которой они прикрепляются к крупной рыбе. Но если начать отдирать прилипалу от акулы, то карманы становятся глубже, давление в них падает и отодрать присоску становится практически невозможно.
Все вы так же хорошо помните, что есть рыбы-прилипалы, например, акульи реморы. У них верхний плавник образует присоску с эдакими карманами, которой они прикрепляются к крупной рыбе. Но если начать отдирать прилипалу от акулы, то карманы становятся глубже, давление в них падает и отодрать присоску становится практически невозможно.
Почему водоплавающие птицы не тонут
У всех водоплавающих птиц большое количество перьев, которые вбирают в себя крошечные частички воздуха. Таким образом по всему их телу находится воздушная прослойка, которая задает очень малую плотность, что не дает птице утонуть.
Вес рыб практически полностью уравновешен архимедовой силой. А их воздушный пузырь способен заметно сужаться, меняя объем тела рыбы и среднюю плотность, благодаря чему она спокойно может подниматься и опускаться в воде.
Вес рыб практически полностью уравновешен архимедовой силой. А их воздушный пузырь способен заметно сужаться, меняя объем тела рыбы и среднюю плотность, благодаря чему она спокойно может подниматься и опускаться в воде.
Как живая природа помогла усовершенствовать самолет
Извечной проблемой самолетов было постоянное вредное колебание крыльев, которые довольно часто ломались из-за этого, что приводило к катастрофам. Такое явление получило название флаттер. Причиной флаттера, как выяснилось позже, являлось несовпадение центра жёсткости с центром давления и недостаточная жёсткость конструкции крыла.
А вот живая природа предусмотрела решение для этой проблемы. Посмотрите на крылья стрекозы - на них есть темные утолщения, которые устраняют вредные колебания при полете, эдакий флаттерный груз. Авиаконструкторы переняли эту идею и проблема решилась сама собой.
А вот живая природа предусмотрела решение для этой проблемы. Посмотрите на крылья стрекозы - на них есть темные утолщения, которые устраняют вредные колебания при полете, эдакий флаттерный груз. Авиаконструкторы переняли эту идею и проблема решилась сама собой.
Как летучие мыши слышат друг друга
Эхо играет очень важную роль в жизни летучих мышей. У них есть специальный эхолокационный аппарат, благодаря которому они ориентируются в полете. Летучая мышь издает ультразвук, а потом ловит эхо, которое отскакивает от препятствий.
У дельфинов-афалин есть гидролокационный аппарат. С помощью него они общаются и даже могут установить породу рыбы, выбранной в качестве объекта пищи на расстоянии до 3 км.
У дельфинов-афалин есть гидролокационный аппарат. С помощью него они общаются и даже могут установить породу рыбы, выбранной в качестве объекта пищи на расстоянии до 3 км.
Почему деревья редко ломаются на ветру
Ствол дерева и главный корень, продолжающий его под землей - это типичный рычаг. Огромный корень на ветру оказывает большое сопротивление, что не дает опрокинуть дерево. Поэтому сосны и дубы почти никогда не вырывает с корнем. А вот ели, у которых корневая система поверхностная, падают довольно часто.
Почему ската лучше не трогать
Электрический скат, угорь, сом и щука способны вырабатывать электричество. У них есть специальный орган, к которому идут толстые нервные стволы от спинного мозга. Первым, кто сравнил электрический удар ската с ударом построенной им батареи, был Алессандро Вольт.
Так же встречаются некоторые виды электрических медуз, так что лишний раз не трогайте их в море:)
Так же встречаются некоторые виды электрических медуз, так что лишний раз не трогайте их в море:)
Кто живёт по третьему закону Ньютона
Помните, как черепахи совершают загребающие движения во время плавания - здесь вам на лицо третий закон Ньютона. Черепаха плывет за счет того, что отстраняет воду рывком назад, что продвигает ее вперед.
Мухи - виртуозы полета, которые так же пользуются этим законом для своих воздушных маневров. Чтобы повернуть направо, муха машет только левыми крылышками и легко поворачивает.
Мухи - виртуозы полета, которые так же пользуются этим законом для своих воздушных маневров. Чтобы повернуть направо, муха машет только левыми крылышками и легко поворачивает.
Почему рыба-меч не пострадает, если пробьет лодку
Рыба меч очень быстрый пловец. Она может пробить своим острым "носом" деревянную лодку, но сама же от этого не пострадает. Дело в том, что в основании меча имеется специальная полость, заполненная жиром, что служит для рыбы гидравлическим амортизатором. Между позвонками рыбы есть очень толстые хрящевые прокладки, которые смягчают удар. Помните, как между вагонами в поезде аналогичные амортизаторы?
Как птицы могут сидеть на высоковольтных проводах
Почему птиц не ударяет током, когда они садятся на провода? Да, потому что птицы вообще отлично знают физику:) По проводнику(металлу провода) ток течет очень легко, а по птице намного труднее, так как у них все-таки сухая кожа лапок, которая не так хорошо проводит его. Ток же течет так как ему проще. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна.
Почему птицы преследуют корабли
Кто-кто когда-то заметил, что птицы часто сопровождают суда в плавании. Причем, в штиль они держатся несколько позади судна, а при ветре – ближе к подветренной стороне. Дело в том, что умные птицы ловят теплые потоки воздуха, выходящие из машинных отсеков. Помните, как волк удерживался над трубой в одной из серий "Ну, погоди!"? Эти теплые потоки и удерживают птиц на определенной высоте и помогают им легко преодолевать большие расстояния. Ведь птицы знают о явлении конвекции, при котором внутренняя энергия передается струями и потоками:) Теперь и вы знаете.
Ссылки по теме:
- 20 фотографий, которые навсегда изменят ваше представление о физике
- Увлекательная физика
- Ферромагнитная жидкость – вещество, имеющее удивительные свойства
- Закон о домашнем насилии в США. Как это работает
- 10 вещей, которые мы знаем о чёрных дырах
Новости партнёров
реклама
по этому проводу ток всегда течет и в определенную сторону (так как это уже замкнутый контур и эти провода питают какие-то подстанции и трансформаторы), и ток бежит по наименьшему сопротивлению (а это всегда провод), если сидящая на проводе птичка вдруг каким-то гипотетическим образом уменьшит свое сопротивление в лапках, то ток предпочтет пробежать по ее телу, нежели по проводу между ее лапками (войдя в одну лапку, далее по тельцу и выйдя с другой лапки)...
почитайте пожалуйста про «шаговое напряжение», которому может подвергнуться человек, стоящий с расставленными ногами, недалеко с упавшим на землю электропроводом, и как он может выжить в такой ситуации, кстати эти знания спасут вам жизнь, если не дай бог такая ситуация возникнет… этот вопрос всегда задают на экзаменах по электробезопасности. этот закон косвенно касается и сидячей на проводе птички.
неприятно слушать сарказмы по отношению к автору, ведь он пытается довести это до читателя.
1) игла в пробке ушла в бок, значит не факт, что пробила
2) лежат 2 нормальные монеты, но тетка пробивает непонятный диск, отличающийся по цвету (может это алюминий или свинец)
3) дырка могла быть заранее высверлена.
блин, простите, но гавно ваше видео, какое-то.
А вот скажи,в дождь лапки у птиц намокнут их убьет сразу?
Тогда на молодые неокрепшие умы это первый раз производило сильное впечатление)).
- А скажите мне дети, что легче всего на свете?
Вовочка тянет руку:
-Член, батюшка.
- Обоснуй.
-От одной мысли поднимается.
- Озорно, но верно. А что тяжелее всего на свете?
- Член. Не захочет, краном не поднимешь.
- М...да. А что же быстрее всего? Молчи, Вовочка, ты мне сейчас на члене всю физику построишь.
Очень хорошие ответы на вопросы маленьких почемучек)))
Если бы сопротивление тела птицы было бы примерно равно сопротивлению отрезка провода между её лап - то ток ток бы через неё потек бы и без "земли".
А вот если бы птица сидела на одной лапе - тогда ей всё пофиг.